Page 147 - 《应用声学》2020年第2期
P. 147

第 39 卷 第 2 期            王文文等: 基于多基因遗传规划的储层岩石静态模量预测                                          305


                            30
                            25
                            20
                           E sta /GPa  15

                            10
                             5
                             0                                      ࠄᰎ      MGGP      ጳভલՌ
                            -5
                                            5               10               15               20
                                                            No.
                               图 7  测试集线性拟合、MGGP 模型静态杨氏模量预测值与实验测量值对比
                           Fig. 7 Static Young’s moduli from experiment, linear fit and MGGP in testing set


                                                                 [6] Tang X M. Determining formation shear-wave transverse
             5 结论                                                  isotropy from borehole Stoneley-wave measurements[J].
                                                                   Geophysics, 2003, 68(1): 118–126.
                 本文采用 MGGP 方法对储层砂岩样品的静态                          [7] 张海澜, 王秀明, 张碧星. 井孔的声场和波 [M]. 北京: 科学出
             杨氏模量进行了预测。该模型比用动态数据线性拟                                版社, 2004.
                                                                 [8] Momeni E, Armaghani D J, Hajihassani M, et al. Pre-
             合标定的经验关系有更好的适应性。此外,在缺失
                                                                   diction of uniaxial compressive strength of rock samples
             横波速度的情况下,它也能够利用较少的输入参数,                               using hybrid particle swarm optimization-based artificial
             即孔隙度、体积密度和纵波速度来进行预测,从而减                               neural networks[J]. Measurement, 2015, 60: 50–63.
                                                                 [9] Salooki M K, Esfandyari M, Rabbani E, et al. Applica-
             小了横波波速度不准确或丢失所引起的计算误差。
                                                                   tion of genetic programing technique for predicting uniax-
             结果表明,MGGP 在实验中用来预测静态杨氏模量                              ial compressive strength using reservoir formation proper-
             是可行的,这为现场数据 (测井或地震) 在解决岩石                             ties[J]. Journal of Petroleum Science & Engineering, 2017,
                                                                   159: 35–48
             力学问题提供了更好的数据处理手段。
                                                                [10] Bayazidi A M, Wang G G, Bolandi H, et al. Multigene
                                                                   genetic programming for estimation of elastic modulus of
                            参 考     文   献                          concrete[J]. Mathematical Problems in Engineering, 2014,
                                                                   1: 1–10.
                                                                [11] Olsen C, Fabricius I L, Krogsboll A, et al. Static and
              [1] Yurikov A, Lebedev M, Pervukhina M. Ultrasonic veloc-
                                                                   dynamic Young’s modulus for lower Cretaceous chalk. A
                 ity measurements on thin rock samples: experiment and
                                                                   Low Frequency Scenario[C]. AAPG International Confer-
                 numerical modeling[J]. Geophysics, 2018, 83(2): 47–56.
                                                                   ence. Cancun, Mexico, 2004.
              [2] Olsen C, Christensen H F, Fabricius I L. Static and dy-
                                                                [12] Li L M, Fjaer E. Modeling of stress-dependent static and
                 namic Young’s moduli of chalk from the North Sea[J].
                                                                   dynamic moduli of weak sandstones[J]. Journal of Geo-
                 Geophysics, 2008, 73(2): 41–50.
                                                                   physical Research-Solid Earth, 2012: 117(B5): 5206.
              [3] Abdulraheem A, Ahmed M, Vantala A, et al. Prediction
                                                                [13] Hassanzadegan A, Guerizec R, Reinsch T, et al. Static
                 of rock mechanical parameters for hydrocarbon reservoirs
                                                                   and dynamic moduli of malm carbonate: a poroelastic
                 using different artificial intelligence techniques[C]. SPE
                                                                   correlation[J]. Pure and Applied Geophysics, 2016, 173(8):
                 Saudi Arabia Section Technical Symposium, 2009.
                                                                   2841–2855.
              [4] 葛洪魁, 陈颙, 林英松. 岩石动态与静态弹性参数差别的微
                                                                [14] Koza J. Genetic programming: on the programming of
                 观机理 [J]. 中国石油大学学报 (自然科学版), 2001, 25(4):
                                                                   computers by means of natural selection[M]. Cambridge:
                 34–36.
                                                                   The MIT Press, 1992.
                 Ge Hongkui, Chen Yong, Lin Yingsong.  Microscopic
                                                                [15] Searson D P, Leahy D E, Willis M J. GPTIPS: an open
                 mechanism of difference between static and dynamic elas-
                                                                   source genetic programming toolbox for multigene sym-
                 tic parameters of rock[J]. College of Petroleum Engineer-
                                                                   bolic regression[C]//Proceedings of the International mul-
                 ing in the University of Petroleum, 2001, 25(4): 34–36.
                                                                   ticonference of engineers and computer scientists, 2010:
              [5] Najibi A R, Ghafoori M, Lashkaripour G R, et al. Em-
                                                                   77–80.
                 pirical relations between strength and static and dynamic
                                                                [16] Gandomi A H, Alavi A H. A new multi-gene genetic pro-
                 elastic properties of Asmari and Sarvak limestones, two
                                                                   gramming approach to nonlinear system modeling. Part I:
                 main oil reservoirs in Iran[J]. Journal of Petroleum Sci-
                                                                   materials and structural engineering problems[J]. Neural
                 ence and Engineering, 2015, 126(1): 78–82.
                                                                   Computing and Applications, 2012, 21(1): 171–187.
   142   143   144   145   146   147   148   149   150   151   152