Page 87 - 《应用声学》2020年第2期
P. 87

第 39 卷 第 2 期                 刘凯悦等: 水下对空中声源的运动参数估计                                           245


             实验处理结果表明:(1) 声源速度估值约 46 m/s,                          445–464.
             大概率判定为空中声源;(2) 利用运动参数估计结                            [7] Ferguson B G, Speechley G C. Acoustic detection and
                                                                   localization of a turboprop aircraft by an array of hy-
             果对空中声源进行测距及定位,测距误差在 15.8%
                                                                   drophones towed below the sea surface[J]. IEEE Journal
             之内。                                                   of Oceanic Engineering, 2009, 34(1): 75–82.
             致谢 感谢参与本次实验的全体实验人员,是他们                              [8] 周伟. 直升机激发水下声场的理论及实验研究 [D]. 哈尔滨:
                                                                   哈尔滨工程大学, 2010.
             的辛勤劳动提供了宝贵可靠的实验数据。                                  [9] Ferguson B G, Quinn B G. Application of the short-time
                                                                   Fourier transform and the Wigner-Ville distribution to the
                                                                   acoustic localization of aircraft[J]. Journal of the Acousti-
                            参 考     文   献                          cal Society of America, 1994, 96(2): 821–827.
                                                                [10] Lo K W, Ferguson B G. Flight path estimation using fre-
              [1] Kazandjian L, Leviandier L. A normal mode theory of  quency measurements from a wide aperture acoustic ar-
                 air-to-water sound transmission by a moving source[J].  ray[J]. IEEE Transactions on Aerospace and Electronic
                 Journal of the Acoustical Society of America, 1994, 96(3):  Systems, 2001, 37(2): 685–694.
                 1732–1740.                                     [11] Xu L, Yang Y, Yu S. Analysis of moving source char-
              [2] Schmidt H, Kuperman W A. Spectral and modal represen-  acteristics using polynomial chirplet transform[J]. Jour-
                 tations of the Doppler-shifted field in ocean waveguides[J].  nal of the Acoustical Society of America, 2015, 137(4):
                 Journal of the Acoustical Society of America, 1998, 96(96):  EL320–EL326.
                 386–395.                                       [12] Liang N, Yang Y, Guo X. Doppler chirplet transform for
              [3] Lai Y S, Makris N C. Spectral and modal formulations for  the velocity estimation of a fast moving acoustic source
                 the Doppler-shifted field scattered by an object moving in  of discrete tones[J]. Journal of the Acoustical Society of
                 a stratified medium[J]. Journal of the Acoustical Society  America, 2019, 145(1): EL34–EL38.
                 of America, 2003, 113(1): 223–244.             [13] Ferguson B G, Lo K W. Transiting aircraft parameter es-
              [4] 张翼鹏. 直升机水下噪声建模与分析 [D]. 西安: 西北工业大                 timation using underwater acoustic sensor data[J]. IEEE
                 学, 2004.                                          Journal of Oceanic Engineering, 1999, 24(4): 424–435.
              [5] Kutakov S I, Maslov I A. Water acoustic noises caused by  [14] Lo K W, Ferguson B G. Flight parameter estimation us-
                 air transport[J]. Physics of Wave Phenomena, 2007, 15(3):  ing instantaneous frequency measurements from a wide
                 201–206.                                          aperture hydrophone array[J]. IEEE Journal of Oceanic
              [6] Buckingham M J, Giddens E M, Simonet F, et al.   Engineering, 2014, 39(4): 607–619.
                 Propeller noise from a light aircraft for low-frequency  [15] Schmidt H. OASES Version 3.1 User Guide and Ref-
                 measurements of the speed of sound in a marine sedi-  erence Manual[EB/OL]. [2019-03-18]. http://lamss.mit.
                 ment [J]. Journal of Computational Acoustics, 2002, 10(4):  edu/lamss/pmwiki/pmwiki.php?n=Site.Oases.
   82   83   84   85   86   87   88   89   90   91   92